Search results for "Supernovae: general"

showing 7 items of 7 documents

Massive Oe/Be stars at low metallicity: Candidate progenitors of long GRBs?

2010

At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theo…

010504 meteorology & atmospheric sciencesMetallicityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstars: rotation0103 physical sciencesMagellanic CloudsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astronomy and Astrophysicsgamma rays: general[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]GalaxyStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Sciencestars: supernovae: generalAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the $Kepler$ 2 Observations

2019

Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically-confirmed type Ia supernova (SN Ia) observed in the $Kepler$ field. The $Kepler$ data revealed an excess emission in its early light curve, allowing to place interesting constraints on its progenitor system (Dimitriadis et al. 2018, Shappee et al. 2018b). Here, we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3$\pm$0.3 days and $\Delta$m$_{15}(B)=0.96\pm$0.03 mag, but it seems to have bluer $B - V$ colors. We construct the "uvoir" bolometric light curve hav…

DATA RELEASEULTRAVIOLETFACTORY OBSERVATIONSFOS: Physical sciencesAstrophysicsType (model theory)medicine.disease_causeSN 2011FE01 natural sciencesLuminosityPhotometry (optics)individual (SN 2018oh) [supernovae]supernovae: generalCIRCUMSTELLAR MATERIAL0103 physical sciencesmedicineSPECTRAAbsorption (logic)Ejecta010303 astronomy & astrophysicssupernovae: individualQCSolar and Stellar Astrophysics (astro-ph.SR)QBLIGHT CURVESHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHIGH-VELOCITY FEATURES010308 nuclear & particles physicsAstronomy and AstrophysicsLight curveSupernovaAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceIMPROVED DISTANCESWHITE-DWARF MODELSAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]general [supernovae]Ultraviolet
researchProduct

Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

2017

The acceleration times of the highest-energy particles which emit gamma-rays in young and middle-age SNRs are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyze this effect. As a test case, we apply our method to describe gamma-rays from IC443. As a proxy of the IC443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the…

Particle numberAstrophysics::High Energy Astrophysical PhenomenaSupernovae: generalFOS: Physical sciencesGamma ray spectraCosmic rayAstrophysics01 natural sciences0103 physical sciences010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsGamma rays: ISMPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral index010308 nuclear & particles physicsGamma raySpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicCosmic rayParticle accelerationSupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars

2017

Extremely strong magnetic fields of the order of $10^{15}\,{\rm G}$ are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collapse supernovae, and in the presence of rapid rotation may power superluminous supernovae and hypernovae associated to long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure and most likely requires an amplification over many orders of magnitude in the protoneutron star. One of the most promising agents is the magnetorotational instability (MRI), which can in principle amplify exponentially fast a weak initia…

MHD[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsmagnetic fieldsMagnetar01 natural sciencesstars: neutronsupernovae: generalstars: rotation0103 physical sciencesstars: magnetic fieldsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMillisecond010308 nuclear & particles physicsAstronomy and AstrophysicsMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

23 GHz VLBI observations of SN 2008ax (Research Note)

2009

We report on phase-referenced 23 GHz Very-Long-Baseline-Interferometry (VLBI) observations of the type IIb supernova SN 2008ax, made with the Very Long Baseline Array (VLBA) on 2 April 2008 (33 days after explosion). These observations resulted in a marginal detection of the supernova. The total flux density recovered from our VLBI image is 0.8 ± 0.3 mJy (one standard deviation). As it appears, the structure may be interpreted as either a core-jet or a double source. However, the supernova structure could be somewhat confused with a possible close by noise peak. In such a case, the recovered flux density would decrease to 0.48 ± 0.12 mJy, compatible with the flux densities measured with the…

individual : SN 2008ax [Supernovae]general [Supernovae]Galaxies : individual : NGC 4490; Radio continuum : stars; Supernovae : individual : SN 2008ax; Supernovae: generalstars [Radio continuum]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellasindividual : NGC 4490 [Galaxies]:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Galaxias [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Galaxias:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

Modeling the remnants of core-collapse supernovae from luminous blue variable stars

2021

LBVs are massive evolved stars that suffer sporadic and violent mass-loss events. They have been proposed as the progenitors of some core-collapse SNe, but this idea is still debated due to the lack of direct evidence. Since SNRs can carry in their morphology the fingerprints of the progenitor stars as well as of the inhomogeneous CSM sculpted by the progenitors, the study of SNRs from LBVs could help to place core-collapse SNe in context with the evolution of massive stars. We investigate the physical, chemical and morphological properties of the remnants of SNe originating from LBVs, in order to search for signatures, revealing the nature of the progenitors, in the ejecta distribution and…

Shock waveAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectStrong interactionSupernovae: generalFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAsymmetryStars: individual: Gal 026.47+0.02Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsStars: massiveEjectaAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)ISM: supernova remnantsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsSupernovaStarsAstrophysics - Solar and Stellar AstrophysicsLuminous blue variableSpace and Planetary ScienceHydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct